
Sept. 11, 1997June 18, 1998 High-Performance Computing Lab 1

Design, Implementation, and Evaluation
of Task Management in Distributed
Fault-Tolerant Real-Time Systems

Project Investigator:  Chao-Ju (Jennifer) Hou

Graduate Students:  Bin Wang, Hung-ying Tyan, and Yi Ye

Dept. of Electrical Engineering

The Ohio State University

Columbus, OH 43210-1272

jhou@ee.eng.ohio-state.edu

http://eewww.eng.ohio-state.edu/drcl



Sept. 11, 1997June 18, 1998 High-Performance Computing Lab 2

IMPACTS

    NEW IDEAS

•The project is a combination of two synergistic components:
scheme development  in a well-defined analytic framework
and validation with software system building and
experiments.

•Resulting software can be readily ported to POSIX-
compliant operating systems and provide user-transparent
task management
services.

•Many problems investigated, e.g., how to insulate the
internals of OS from application programs to achieve
interoperability, how to provide distributed services in the
form of system calls, are consistent with the objectives
pursued by military/industry sectors.

•Design, implementation, and empirical evaluation of
a task management system in distributed real-time
environments to meet the timeliness requirements of
both periodic and aperiodic tasks.

•Incorporation of fault tolerance by (i) identifying and
replicating critical module; (ii) deploying
checkpointing and rollback recovery technology; and
(iii)  coordinating workstations to restart checkpointed
processes in case of failure.

•Implementation of the proposed mechanism as a
software layer that lies between OS and application
processes.

DAEMONS IN THE DECENTRALIZED LS MECHANISM

���������
���	

Submitting Home Node

������� ����	


������������������ ������

�	���	��	���	�

��������
���	��


Server Node


������
�����������	�


������
�����������	�

������
������

��������	
��� ��
��
���

SCHEDULE

������ ��	 
���	���� �
��� �����	 �������
������ ����������
�	����� ��	 ����������

���������� � �����
�������� ��� ���
�����	 ��������

������������� � ����
���������� ������� ������

������� ��	 ����������
� ��� ������� ������
����
��� � ���� 
������

���� ���� ��������



Sept. 11, 1997June 18, 1998 High-Performance Computing Lab 3

Outline of Presentation

• Project Overview

– Real-time task management
– Objectives

• Fault-tolerance Components in Our Project

– Replication of critical task modules

– Load redistribution

– Checkpointing and rollback recovery

•   Software Implementation and Status



Sept. 11, 1997June 18, 1998 High-Performance Computing Lab 4

Real-Time Task System

Every task is characterized by a laxity -- the latest time a task must
start execution in order to meet its deadline.

• Periodic tasks

– Invoked at fixed time intervals.
– Attributes are usually known a priori.

• Aperiodic tasks

– Invoked randomly in response to environmental stimuli.
– Attributes are not completely specified.



Sept. 11, 1997June 18, 1998 High-Performance Computing Lab 5

Methodology Used

• Task decomposition: Decompose periodic tasks into a set of
communicating modules, and represent them by a task flow
graph.

• Module allocation: Allocate periodic task modules to
workstations subject to precedence constraints and timing
requirements.

• Load redistribution: Dynamically redistribute aperiodic
tasks as they arrive to minimize the probability of dynamic
failure.

• Scheduling: Schedule modules/tasks on a workstation using
the rate-monotonic policy, the earliest-deadline-first policy,
or variations thereof.



Sept. 11, 1997June 18, 1998 High-Performance Computing Lab 6

An Example of Task Flow Graph

Entry

M21

M31

Entry

End

M31

Entry

End
T1

T2 T3

T3

End

 L

M23

M24

M25

 L
p

M12

 +

M13 M14

 +

End

M11

Entry

Send

Reply



Sept. 11, 1997June 18, 1998 High-Performance Computing Lab 7

Replication of Critical Task Modules

• We devise a module allocation scheme to allocate periodic task
modules in a planning cycle so that

– each task can be completed with both logical and timing
correctness.
– task precedence and timing constraints are satisfied.

• With the critical path analysis approach, we devise a module
replication scheme to identify and replicate modules whose
completion is critical to the timely completion of tasks in the system.

Results were reported in
(1) C. Hou and K. Shin, “Allocation of periodic task modules with precedence and deadline
constraints in distributed real-time systems,” IEEE Trans. on Computers, Vol. 46, No. 12,
1997 (19 pages).

(2) C. Hou and K. Shin, “Replication and allocation of task modules in distributed real-time
systems,” IEEE 25th Annual Int’l Symp. on Fault-Tolerant computing, pp. 26--35, June, 1995.



Sept. 11, 1997June 18, 1998 High-Performance Computing Lab 8

Module Replication for Fault Tolerance

Given a task flow graph that describes the computation and
communication modules and the precedence and timing constraints
among them, we consider

– which modules are replicated;

– how many copies are replicated for each selected module;

– how to assign the replicas to workstations;

– how to schedule the replicas on each workstation.

with the objective of achieving timely correctness.



Sept. 11, 1997June 18, 1998 High-Performance Computing Lab 9

Critical Path Analysis

• Observation: There is no need to replicate modules that can be
completed in time even with consideration of worst-case recovery
time.

• Criterion for selecting critical modules:

                     LCi - ri < ei + tr ,

       then Mi may not be completed in time in the case of failure.

     where

•  LCi is the latest completion time of module Mi,

•  ri is the earliest release time of  Mi,

•  ei is the execution time of Mi,

•  tr is the worst-case error recovery time.



Sept. 11, 1997June 18, 1998 High-Performance Computing Lab 10

Critical Path Analysis

• Key Step 1: Calculate ri from (1) the invocation time of the task and
(2) the precedence constraints preceding Mi.

• Set ri initially to the invocation time of the task to which Mi belongs.

Then, modify rias

                     ri = max { ri , maxj { r j + ej: Mj --> Mi } }

• Key Step 2: Calculate LCi from (1) the deadline of the task and the

precedence constraints after Mi.

• Initially set LCi to the deadline of the task to which Mi belongs.  Then,

modify LCi as

                    LCi = min { LCi , maxj { LCj - ej: Mi --> Mj } }



Sept. 11, 1997June 18, 1998 High-Performance Computing Lab 11

Example of Critical Path Analysis

r = 1 r = 2 r = 3
e = 2 e = 2 e = 1

r = max {0, max{1+2, 2+2, 3+1}}
  = 4

r = 4

LC = 12
e = 4

LC = 9
e = 4

LC = min{14, min{12-4, 9-4}}
     = 5

Task release time=0

Task deadline=14



Sept. 11, 1997June 18, 1998 High-Performance Computing Lab 12

• There is a tradeoff between fault tolerance and timing
requirements:

– The larger #replicas, the better fault-tolerance capability.

– Excessive replicas may jeopardize the timely completion of
modules.

• We augment the task system with m replicas for each selected
critical module, and use the module allocation scheme, coupled
with the module scheduling algorithm, to determine the
assignment and scheduling of all modules.

• If there is computation power left, try to increase #replicas until
the required probability of dynamic failure is violated.

Determination of #Replicas



Sept. 11, 1997June 18, 1998 High-Performance Computing Lab 13

Load Redistribution

• We characterize load redistribution (or load sharing, LS) with three
component policies: the transfer policy, the location policy, and the
information policy, and devise policies so that

      (1) an overflow task will not be transferred to an “incapable workstation;”

      (2) multiple nodes will not send their overflow tasks to the same workstation;

      (3) communication overhead is kept minimal;

      (4) nodes are coordinated with one another to restart checkpoint files in case

of failures.

Research results were reported in
(1) C. Hou and K. Shin, “Evaluation of load sharing with consideration of its communication
activities,” IEEE Trans. on Parallel and Distributed Systems, Vol. 7, No. 7, pp. 724--740,
July, 1996.

(2) C. Hou and K. Shin, “Implementation of decentralized load sharing in networked
workstations using the Condor package,” Journal of Parallel and Distributed Systems, Vol.
40, pages 173--184, January, 1997.



Sept. 11, 1997June 18, 1998 High-Performance Computing Lab 14

Transfer Policy

• We characterize the workload (i.e., state) in terms of

      (1) average workload in the past 5 minutes (AvgLoad);

      (2) keyboard idle time (KeyboardIdle);

 (3) the number of tasks queued and their states (Task_state).
• A workstation is evaluated to be

      Idle: (AvgLoad <= 0.3) && (KeyboardIdle >= 15 min) &&    
(Task_state = = NoTask)

Other states, e.g., lightly-loaded, moderately-loaded, heavily-loaded
can be similarly defined and configured.

• Upon arrival of a task, if the local workstation is not idle or lightly-
loaded, then the task is considered for transfer.



Sept. 11, 1997June 18, 1998 High-Performance Computing Lab 15

Information Policy

• We use state-change broadcasts as the information policy to provide
each workstation with timely state information.

• A workstation broadcasts a message, informing all the other
workstations of its state change, whenever its state switches from one
to another.

• Message exchange occurs only when the state changes, and thus the
communication overhead is reduced while the state information kept at
each workstation is likely up-to-date.

• Fine-tuning is possible by, for example, having a workstation
broadcast a message when its state changes from idle to medium-
loaded and vice versa.



Sept. 11, 1997June 18, 1998 High-Performance Computing Lab 16

Location Policy

• We use preferred lists to coordinate workstations on their
location policy: Each workstation orders all the other
workstations into a preferred list subject to:
• a workstation is the kth preferred workstation of one and only one

workstation.

• if workstation i is the kth preferred workstation of j, then
workstation j is also the kth preferred workstation of i.

We prove that load balance is achieved in the long run with
the preferred list

• Whenever a workstation decides to transfer a task, it traces its
preferred list, and locates the first idle/lightly-loaded
workstation in the list.

• The preferred list of a workstation is static, but the states
associated with the workstations in the list may change.



Sept. 11, 1997June 18, 1998 High-Performance Computing Lab 17

Fault-Tolerance in Location Policy

In the case of workstation failure

• If we simply drop the failed workstation from the preferred list
of a workstation, the desired load balance feature is destroyed.

     Solution: we adjust the preferred lists in case of failure to retain
the two properties of the preferred lists.

• If no checkpoint file is taken and stored somewhere else, all the
tasks executed at a failed workstation will be lost.

     Solution: we devise an approach to coordinate workstations to
keep backup checkpoint files for their most preferred nodes so
that tasks executed/queued at a failed workstation can be
restarted whenever needed.



Sept. 11, 1997June 18, 1998 High-Performance Computing Lab 18

• We implement the load sharing mechanism as a software layer
outside the OS kernel at the user level, since this design
– eliminates the need to access/change the internals of OS,
– allows us to concentrate on varying the degree of design

complexity and
– is portable and can be ported to any POSIX-compliant platforms.

• Based on the Condor software distributed by Univ. of
Wisconsin -- Madison, we configure the proposed mechanism
into three daemons, Collector, Schedd, Startdd, which
constantly run on each workstation.

• Two additional processes, Shadow and Starter, run on the
submitting workstation and the server workstation,
respectively, when a task is remotely executed.

Software Configuration



Sept. 11, 1997June 18, 1998 High-Performance Computing Lab 19

Daemon Configuration

���������
���	

Submitting Home Node

������� ����	


������������������ ������

�	���	��	���	�
��������
���	��


Server Node


������
�����������	�


������
�����������	�

������
������

���������������������
�



Sept. 11, 1997June 18, 1998 High-Performance Computing Lab 20

Implementation Features

• Both module allocation and load sharing are performed transparently
to users.

• No code change is needed for user programs; only a relink to the
modified C library is required for user programs.

• We preserve local execution environment for remotely executing
processes via remote system call mechanism.

• We set protection for local file systems; they will not be touched by
remotely executing tasks.

• Remote processes are periodically checkpointed, sen back to the
home workstation, and restarted at some other workstation in the
case of failure.

• A Java-integrated monitor is provided to facilitate monitoring of
     participating workstations and submitted tasks.



Sept. 11, 1997June 18, 1998 High-Performance Computing Lab 21

Remote System Calls
All environment-related system calls issued by a remote executing task are
• trapped by the modified C system call stubs, and
• forwarded to the Shadow on the home workstation which acts as an

agent and executes the system calls on behalf of the task.
• The Shadow executes the system call on behalf of the remotely

executing task, packages up the call results, and sends them back to the
system call stubs on the executing machine.

�����
�������

����������

��������

������

������

����������

��������

������

������ ������
��

trap to kernel
return control

Executing NodeInitiating Node



Sept. 11, 1997June 18, 1998 High-Performance Computing Lab 22

• The state of a process is transferred in the form of checkpoint files.  Before a process
is executed for the first time, its executable file is augmented to a checkpoint file
without stack area.

• Starter causes a running task to save its file state and stack and then dump core.
Starter then creates a new checkpoint file from pieces of the previous checkpoint and
a core image.

• Starter sends the checkpoint file to the Shadow at the home workstation.
• Shadow at the home workstation monitors whether or not the remote starter is alive

by periodically probing; in the case of starter failure,  Shadow will restart the
checkpoint file by treating it as a newly-arrived task.

Checkpoint and Rollback Recovery

���������
���	

Submitting Home Node

������� ����	


������������������ ������

�	���	��	���	�
��������
���	��


Server Node


������
�����������	�


������
�����������	�

������
������



Sept. 11, 1997June 18, 1998 High-Performance Computing Lab 23

Details on Checkpoint File Creation

• Creating checkpoint file:

     (1) A special version of crt() is included which sets up CKPT() as the signal handler of
SIGTSTP.

     (2) Starter causes a running task to checkpoint by sending it the signal SIGTSTP.

     (3) When CKPT() is called, it updates the table of open files by recording the current
file positions. A setjump is executed to save key register contents in a global data area,
and the process sends itself a SIGQUIT signal which results in a core dump.

     (4) The Starter then combines the executable file and the core file to produce a
checkpoint file.

• Restarting checkpoint file:
     (1) A restarted checkpoint file starts from the special crt() which sets up restart() as the

signal handler for SIGUSR2 and sends the checkpoint process that signal.

     (2) When restart() is called, it reads the saved stack in from the checkpoint file, reopens
and repositions all the files, and execute a longjmp back to CKPT().

     (3) CKPT() returns to whatever code segment at the time of checkpoint.



Sept. 11, 1997June 18, 1998 High-Performance Computing Lab 24

Implementation Status

• The first version of the software prototype is up and running, and can
be ported to most UNIX environments.  But,

     (1) It does not support inter-process communication (IPC) and signal facilities
as a result of placing the task management mechanism outside the OS kernel.

     (2) A consequence of (1) is that although we devise a checkpointing scheme
that dynamically varies checkpoint interval with respect to IPC frequency to
avoid state inconsistency (i.e., the received-but-not-yet-sent scenario)  and to
reduce process rollback propagation, it is virtually of no use now.

• For demonstration purpose, we are currently implementing a Java-
integrated graphic user interface that will probe the Monitor daemon
on each workstation for task execution statistics.

The Java program can be a standalone application or a Java applet
readily to be incorporated into a web page; and (2) can be remotely
invoked (i.e., not necessarily on one of the workstations)



Sept. 11, 1997June 18, 1998 High-Performance Computing Lab 25



Sept. 11, 1997June 18, 1998 High-Performance Computing Lab 26

How Our Research Results Can be Used

• JPL has already ftp’ed our first software release (that contains
the load redistribution and checkpoint/rollback recovery
components) to their site, and plans to port the software to their
testbed.

• We will provide technical support and student helps whenever
needed.

• We will be glad to share our research results on design of
module replication, checkpoint/rollback recovery schemes with
JPL and/or other commercial/military sectors.

• We look forward to long-term collaboration with JPL.


